Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Clin Invest ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696257

RESUMO

We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.

2.
J Am Soc Mass Spectrom ; 35(1): 158-165, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38061327

RESUMO

This study systematically and experimentally evaluates data integration methods for the isotopic analysis of Pb at ultratrace levels using thermal ionization mass spectrometry (TIMS) with a continuous heating method. The evaluation utilized a certified reference material of Pb (SRM 981). The experimental evaluations encompass different data calculation methods (methods I, II, and III) and integration ranges (full, over 1%, 25%, and 75%). Method I, in which isotope ratios were calculated based on summed ion signal intensities compensating for mass fractionation, was consistent with the certified values for 10 and 1 ng standard samples across all integration ranges. For 100 pg samples, full range calculations failed for specific isotope ratios, but reduced ranges (over 1%, 25%, and 75%) yielded values overlapping with certified ones. Method II, in which isotope ratios were calculated by averaging the precalculated isotope ratios, exhibited inferior performance compared to method I. Method III, using weighted averaging to reduce anomalous values, showed results consistent with those of method I but was recommended only for single measurements. An integration range of over 1% or 25% is preferred to exclude anomalies while compensating for mass fractionation. The optimized method was validated by comparing two different instruments used for the isotopic analysis of the reference material. The enhanced accuracy and precision provide valuable insights for researchers working in ultratrace-level Pb isotopic analysis using TIMS.

3.
J Clin Pharmacol ; 64(2): 215-226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853524

RESUMO

Dulaglutide 3.0 and 4.5 mg weekly doses were approved for additional glycemic control in adult patients with type 2 diabetes inadequately controlled with metformin and 0.75 or 1.5 mg weekly doses of dulaglutide. Effects such as nausea and vomiting are commonly reported with dulaglutide and other glucagon-like peptide-1 receptor agonist therapies. Based on a pharmacokinetic/pharmacodynamic model-informed approach, a stepwise dose-escalation scheme with 4-week intervals between dose increments was suggested to mitigate gastrointestinal events for dulaglutide. These gastrointestinal events are dose dependent and attenuate over time with repeated dosing. A Markov chain Monte Carlo pharmacokinetic/pharmacodynamic joint model was developed using AWARD-11 data (N = 1842) to optimize dulaglutide dose escalation to 3.0 and 4.5 mg to mitigate gastrointestinal events. Model simulations evaluated probabilities of nausea and vomiting events for various dosing scenarios in patients needing higher doses for additional glycemic control. The model indicated that patients may dose escalate from 1.5 to 3.0 mg, then 4.5 mg weekly after at least 4 weeks on each dose. No clinically meaningful differences in nausea or vomiting events were expected when patients escalated to 3.0 or 4.5 mg following initiation at 0.75 or 1.5 mg dulaglutide. Based on the findings of this model, a minimum 4-week duration at each dose before escalation was appropriate to reduce gastrointestinal events of dulaglutide, consistent with observed gastrointestinal events data from the AWARD-11 study and supporting the currently recommended dose-escalation regimen of dulaglutide doses of 3.0 and 4.5 mg for additional glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Glicemia , Hemoglobinas Glicadas , Peptídeos Semelhantes ao Glucagon/efeitos adversos , Fragmentos Fc das Imunoglobulinas/efeitos adversos , Proteínas Recombinantes de Fusão/efeitos adversos , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
4.
Nat Microbiol ; 8(6): 1108-1122, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142773

RESUMO

Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.


Assuntos
Quirópteros , Morbillivirus , Animais , Chlorocebus aethiops , Humanos , Células Vero , Zoonoses , Morbillivirus/genética , Linhagem Celular
5.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220746

RESUMO

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismo
6.
Biol Res Nurs ; 25(3): 491-500, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36859821

RESUMO

PURPOSE: To examine if gut microbial taxa abundances and predicted functional pathways correlate with Bristol Stool Form Scale (BSFS) classification at the end of neoadjuvant chemotherapy and radiation therapy (CRT) for rectal cancer. METHODS: Rectal cancer patients (n = 39) provided stool samples for 16S rRNA gene sequencing. Stool consistency was evaluated using the BSFS. Gut microbiome data were analyzed using QIIME2. Correlation analysis were performed in R. RESULTS: At the genus level, Staphylococcus positively correlates (Spearman's rho = 0.26), while Anaerofustis, Roseburia, Peptostreptococcaceae unclassified, Ruminococcaceae UBA1819, Shuttleworthia, Ca. Soleaferrea, Anaerostignum, Oscillibacter, and Akkermansia negatively correlate with BSFS scores (Spearman's rho -0.20 to -0.42). Predicted pathways, including mycothiol biosynthesis and sucrose degradation III (sucrose invertase), were positively correlated with BSFS (Spearman's rho = 0.03-0.21). CONCLUSION: The data support that in rectal cancer patients, stool consistency is an important factor to include in microbiome studies. Loose/liquid stools may be linked to Staphylococcus abundance and to mycothiol biosynthesis and sucrose degradation pathways.


Assuntos
Fezes , Neoplasias Retais , Humanos , Bactérias , Fezes/microbiologia , Genes de RNAr , Redes e Vias Metabólicas , Neoplasias Retais/genética , RNA Ribossômico 16S/genética , Estudo de Prova de Conceito
7.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817940

RESUMO

Rationale: SARS-CoV-2 entry into host cells is facilitated by endogenous and exogenous proteases that proteolytically activate the spike glycoprotein and antiproteases inhibiting this process. Understanding the key actors in viral entry is crucial for advancing knowledge of virus tropism, pathogenesis, and potential therapeutic targets. Objectives: We aimed to investigate the role of naïve serum and alpha-1-antitrypsin (AAT) in inhibiting protease-mediated SARS-CoV-2 entry and explore the implications of AAT deficiency on susceptibility to different SARS-CoV-2 variants. Findings: Our study demonstrates that naïve serum exhibits significant inhibition of SARS-CoV-2 entry, with AAT identified as the major serum protease inhibitor potently restricting entry. Using pseudoparticles, replication-competent pseudoviruses, and authentic SARS-CoV-2, we show that AAT inhibition occurs at low concentrations compared with those in serum and bronchoalveolar tissues, suggesting physiological relevance. Furthermore, sera from subjects with an AAT-deficient genotype show reduced ability to inhibit entry of both Wuhan-Hu-1 (WT) and B.1.617.2 (Delta) but exhibit no difference in inhibiting B.1.1.529 (Omicron) entry. Conclusions: AAT may have a variant-dependent therapeutic potential against SARS-CoV-2. Our findings highlight the importance of further investigating the complex interplay between proteases, antiproteases, and spike glycoprotein activation in SARS-CoV-2 and other respiratory viruses to identify potential therapeutic targets and improve understanding of disease pathogenesis.

8.
Viruses ; 16(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38257729

RESUMO

CCR5 is among the most studied chemokine receptors due to its profound significance in human health and disease. The notion that CCR5 is a functionally redundant receptor was challenged through the demonstration of its unique protective role in the context of West Nile virus in both mice and humans. In the nearly two decades since this initial discovery, numerous studies have investigated the role of CCR5 in the context of other medically important neurotropic flaviviruses, most of which appear to support a broad neuroprotective role for this receptor, although how CCR5 exerts its protective effect has been remarkably varied. In this review, we summarize the mechanisms by which CCR5 controls neurotropic flaviviruses, as well as results from human studies evaluating a genetic link to CCR5, and propose unexplored areas of research that are needed to unveil even more exciting roles for this important receptor.


Assuntos
Flavivirus , Vírus do Nilo Ocidental , Humanos , Animais , Camundongos , Vírus do Nilo Ocidental/genética , Receptores de Quimiocinas , Receptores CCR5/genética
9.
J Health Commun ; 27(5): 312-325, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35904165

RESUMO

Communication infrastructure theory (CIT) suggests that an ethnic enclave's communication infrastructure (CI) shapes the community's unique social processes that give rise to social determinants of health. A well-integrated CI in ethnic enclaves that includes community-based organizations (CBOs), local ethnic media, and resident networks is positively associated with residents' health outcomes. Through storytelling, CBOs and other community actors obtain and disseminate information, develop a sense of belonging to the community, and participate in problem-solving activities, including health-related ones. Local ethnic media can play an important role in building a network of neighborhood storytellers by catalyzing storytelling about local resources and problems. We propose three main categories of "catalyzing storytelling" by local ethnic media: 1) CBO stories, 2) geo-ethnic stories, and 3) presentation of root causes and solutions for community problems. This study examines the content of Boston Chinatown's local ethnic news media outlet, Sampan, to assess the three categories of catalyzing stories. We analyzed a total of 340 news articles and one interview with the editor. The findings showed that Sampan tells stories in all three categories. Based on our findings, we further develop the concept of catalyzing as a communication process in CIT. This new concept in CIT has practical implications for public health communication as it demonstrates a process through which local ethnic media can foster community engagement and health. Health communicators should seek opportunities to work collaboratively with local ethnic media in ways that will serve to catalyze community.


Assuntos
Comunicação , Comunicação em Saúde , Boston , Etnicidade , Humanos , Meios de Comunicação de Massa , Características de Residência
10.
J Korean Med Sci ; 36(49): e332, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931496

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) exerts cytotoxic effects on brain cells, especially on those belonging to the oligodendrocyte lineage, in preterm infants. The susceptibility of oligodendrocyte lineage cells to LPS-induced inflammation is dependent on the developmental stage. This study aimed to investigate the effect of LPS on oligodendrocyte lineage cells at different developmental stages in a microglial cell and oligodendrocyte co-culture model. METHODS: The primary cultures of oligodendrocytes and microglia cells were prepared from the forebrains of 2-day-old Sprague-Dawley rats. The oligodendrocyte progenitor cells (OPCs) co-cultured with microglial cells were treated with 0 (control), 0.01, 0.1, and 1 µg/mL LPS at the D3 stage to determine the dose of LPS that impairs oligodendrocyte differentiation. The co-culture was treated with 0.01 µg/mL LPS, which was the lowest dose that did not impair oligodendrocyte differentiation, at the developmental stages D1 (early LPS group), D3 (late LPS group), or D1 and D3 (double LPS group). On day 7 of differentiation, oligodendrocytes were subjected to neural glial antigen 2 (NG2) and myelin basic protein (MBP) immunostaining to examine the number of OPCs and mature oligodendrocytes, respectively. RESULTS: LPS dose-dependently decreased the proportion of mature oligodendrocytes (MBP+ cells) relative to the total number of cells. The number of MBP+ cells in the early LPS group was significantly lower than that in the late LPS group. Compared with those in the control group, the MBP+ cell numbers were significantly lower and the NG2+ cell numbers were significantly higher in the double LPS group, which exhibited impaired oligodendrocyte lineage cell development, on day 7 of differentiation. CONCLUSION: Repetitive LPS stimulation during development significantly inhibited brain cell development by impairing oligodendrocyte differentiation. In contrast, brain cell development was not affected in the late LPS group. These findings suggest that inflammation at the early developmental stage of oligodendrocytes increases the susceptibility of the preterm brain to inflammation-induced injury.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Animais , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Microglia/citologia , Microglia/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley
11.
J Health Commun ; 26(10): 717-727, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743669

RESUMO

The health benefits of having a supportive community and access to community resources are well documented and for many immigrant communities, community-based organizations (CBOs) play an important role by providing culturally competent services. The current study uses communication infrastructure theory (CIT) to examine the associations between connections to CBOs, civic engagement, and protective health behaviors within the context of Boston Chinatown's Chinese immigrant community. According to CIT, neighborhood communication resources encourage residents to engage in civic activities and health-related problem-solving behaviors. To assess these associations, data from a needs assessment survey (N = 360) were analyzed. Results showed that connections to CBOs had a positive association with total number of protective health behaviors. Civic engagement was not found to be associated with health behaviors. We also found no indirect effect of connections to CBOs on the protective health behaviors via civic engagement. These results carry important theoretical and practical implications.


Assuntos
Recursos Comunitários , Emigrantes e Imigrantes , Boston , Comunicação , Humanos , Avaliação das Necessidades
12.
Res Sq ; 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34611656

RESUMO

Bats are significant reservoir hosts for many viruses with zoonotic potential1. SARS-CoV-2, Ebola virus, and Nipah virus are examples of such viruses that have caused deadly epidemics and pandemics when spilled over from bats into human and animal populations2,3. Careful surveillance of viruses in bats is critical for identifying potential zoonotic pathogens. However, metagenomic surveys in bats often do not result in full-length viral sequences that can be used to regenerate such viruses for targeted characterization4. Here, we identify and characterize a novel morbillivirus from a vespertilionid bat species (Myotis riparius) in Brazil, which we term myotis bat morbillivirus (MBaMV). There are 7 species of morbilliviruses including measles virus (MeV), canine distemper virus (CDV) and rinderpest virus (RPV)5. All morbilliviruses cause severe disease in their natural hosts6-10, and pathogenicity is largely determined by species specific expression of canonical morbillivirus receptors, CD150/SLAMF111 and NECTIN412. MBaMV used Myotis spp CD150 much better than human and dog CD150 in fusion assays. We confirmed this using live MBaMV that was rescued by reverse genetics. Surprisingly, MBaMV replicated efficiently in primary human myeloid but not lymphoid cells. Furthermore, MBaMV replicated in human epithelial cells and used human NECTIN4 almost as well as MeV. Our results demonstrate the unusual ability of MBaMV to infect and replicate in some human cells that are critical for MeV pathogenesis and transmission. This raises the specter of zoonotic transmission of a bat morbillivirus.

14.
Science ; 373(6561): eabi8835, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529475

RESUMO

Puel and Casanova and Kisand et al. challenge our conclusions that interferonopathy and not IL-17/IL-22 autoantibodies promote candidiasis in autoimmune polyendocrinopathy­candidiasis­ectodermal dystrophy. We acknowledge that conclusive evidence for causation is difficult to obtain in complex human diseases. However, our studies clearly document interferonopathy driving mucosal candidiasis with intact IL-17/IL-22 responses in Aire-deficient mice, with strong corroborative evidence in patients.


Assuntos
Imunidade nas Mucosas , Micoses , Humanos , Mucosa , Animais , Camundongos
15.
J Virol ; 95(23): e0125721, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523966

RESUMO

SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.


Assuntos
COVID-19/metabolismo , Citocinas/metabolismo , Interferon Tipo I/metabolismo , SARS-CoV-2 , Fator de Transcrição RelA/metabolismo , Transcriptoma , Replicação Viral , Células A549 , Animais , COVID-19/virologia , Chlorocebus aethiops , Epigenômica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fatores de Transcrição/metabolismo , Células Vero
16.
Stem Cell Reports ; 16(9): 2274-2288, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34403650

RESUMO

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.


Assuntos
COVID-19/patologia , Quimiocina CCL2/metabolismo , Traumatismos Cardíacos/virologia , Monócitos/imunologia , Miócitos Cardíacos/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Humanos , Macrófagos/imunologia , Masculino , Miócitos Cardíacos/virologia , Células-Tronco Pluripotentes/citologia , Células Vero
17.
Front Immunol ; 12: 686411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220838

RESUMO

Antibody-dependent enhancement (ADE) is a phenomenon that occurs when cross-reactive antibodies generated from a previous flaviviral infection increase the pathogenesis of a related virus. Zika virus (ZIKV) is the most recent flavivirus introduced to the Western Hemisphere and has become a significant public health threat due to the unanticipated impact on the developing fetus. West Nile virus (WNV) is the primary flavivirus that circulates in North America, and we and others have shown that antibodies against WNV are cross-reactive to ZIKV. Thus, there is concern that WNV immunity could increase the risk of severe ZIKV infection, particularly during pregnancy. In this study, we examined the extent to which WNV antibodies could impact ZIKV pathogenesis in a murine pregnancy model. To test this, we passively transferred WNV antibodies into pregnant Stat2-/- mice on E6.5 prior to infection with ZIKV. Evaluation of pregnant dams showed weight loss following ZIKV infection; however, no differences in maternal weights or viral loads in the maternal brain, spleen, or spinal cord were observed in the presence of WNV antibodies. Resorption rates, and other fetal parameters, including fetal and placental size, were similarly unaffected. Further, the presence of WNV antibodies did not significantly alter the viral load or the inflammatory response in the placenta or the fetus in response to ZIKV. Our data suggest that pre-existing WNV immunity may not significantly impact the pathogenesis of ZIKV infection during pregnancy. Our findings are promising for the safety of implementing WNV vaccines in the continental US.


Assuntos
Reações Cruzadas/imunologia , Vírus do Nilo Ocidental/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Testes de Neutralização , Gravidez , Fator de Transcrição STAT2/genética , Carga Viral , Febre do Nilo Ocidental/imunologia
18.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081913

RESUMO

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Assuntos
COVID-19/virologia , Transdiferenciação Celular , Células Secretoras de Insulina/virologia , SARS-CoV-2/patogenicidade , Acetamidas/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , COVID-19/mortalidade , Transdiferenciação Celular/efeitos dos fármacos , Chlorocebus aethiops , Cicloexilaminas/farmacologia , Citocinas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Glucagon , Interações Hospedeiro-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Tripsina/metabolismo , Células Vero , Adulto Jovem
20.
Immunity ; 54(3): 557-570.e5, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33577760

RESUMO

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global morbidity, mortality, and societal disruption. A better understanding of virus-host interactions may potentiate therapeutic insights toward limiting this infection. Here we investigated the dynamics of the systemic response to SARS-CoV-2 in hamsters by histological analysis and transcriptional profiling. Infection resulted in consistently high levels of virus in the upper and lower respiratory tracts and sporadic occurrence in other distal tissues. A longitudinal cohort revealed a wave of inflammation, including a type I interferon (IFN-I) response, that was evident in all tissues regardless of viral presence but was insufficient to prevent disease progression. Bolstering the antiviral response with intranasal administration of recombinant IFN-I reduced viral disease, prevented transmission, and lowered inflammation in vivo. This study defines the systemic host response to SARS-CoV-2 infection and supports use of intranasal IFN-I as an effective means of early treatment.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , SARS-CoV-2/fisiologia , Animais , Biópsia , COVID-19/genética , COVID-19/imunologia , Cricetinae , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Especificidade de Órgãos/imunologia , Virulência , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...